Evaluating the Safety of Stem Cell Therapies: A Regulatory View

Christopher A Bravery

cbravery@advbiols.com

CAB

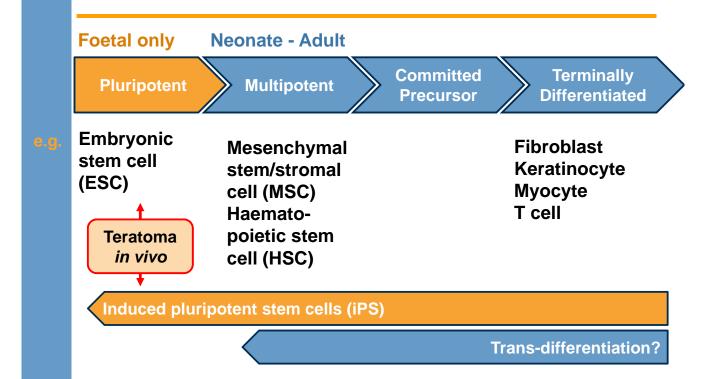
Consulting on Advanced Biologicals

Objectives

- This talk does <u>not</u> contain any clear recommendations
- There are no generalised right or wrong answers or approaches
 - case-by-case
 - dependent on cell, indication, MoA etc.
- Primarily intended to be thought-provoking

Note: necessary generalisations made in this talk may not be true in all situations

Mechanism/s of Action


For simplicity;

- MoA = assumed or best working theory of the mechanism or mechanisms of action.
 - It is a given these will likely not be known for sure
 - One of your objectives is to generate evidence to support your working theory
 - Another is not to avoid generating data that don't support it

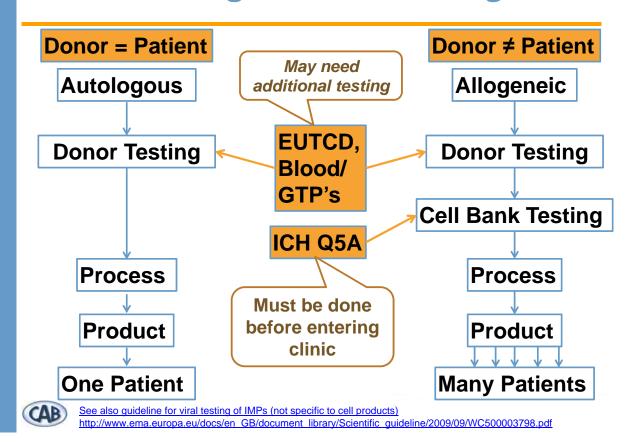
CAB

Consulting on Advanced Biologicals

When is a cell a stem cell?

Some unique issues with cells

- Cells are alive
 - Change constantly to environment
- Pose unusual safety issues
 - Cannot be sterilised
 - Cannot incorporate viral clearance steps
- Might persist for the patient's lifetime
- Might form tumours
 - Inherent characteristics
 - As a consequence of manufacturing (e.g. chromosomal damage, growth factor/cytokine exposure


Consulting on Advanced Biologicals

Control at Raw Materials Level

- Need to consider the source of material
- Since raw materials will come in contact with living cell product/intermediates risk of transmission of disease
 - Appropriate viral testing
 - EDQM certificate suitability (TSE risk)
- In many cases good quality isn't easily available
 - Research grade only
 - GMP preferable but not essential

Starting Material Testing

Donor Testing Requirements

FDA	EMA	
Test Methods not specified Syphilis, West Nile Virus	 EMA Methods Specified (Ab vs. Ag) Member States additional testing 	
FDA Approved/Cleared	CE Marked/NCA approved	
Specific regions identified	General Assessment for risk	
Assess for risk factors	Additional – Specified chronic autoimmune diseases deferral	
No requirements	Minimal requirements	
Registered with FDA	Registered Tissue Establishment with Member States	
10 years	30 years	
No donor testing requirements	Same as allogeneic somatic cells	
	Test Methods not specified Syphilis, West Nile Virus FDA Approved/Cleared Specific regions identified Assess for risk factors No requirements Registered with FDA 10 years No donor testing	

FDA Donor Eligibility - TSE Risk

Guidance for Industry: Eligibility Determination for Donors of Human Cells, Tissues, and Cellular and Tissue-Based Products, FDA 2007

LIST OF BSE-AFFECTED COUNTRIES APPLICABLE TO DONOR DEFERRAL

European Countries to be Used for Deferral of Donors Based on Geographic Risk of BSE

Albania, Austria, Belgium, Bosnia-Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Liechtenstein, Luxembourg, Macedonia, Netherlands, Norway, Poland, Portugal, Romania, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, United Kingdom¹, and Yugoslavia.

¹For purposes of this guidance, the United Kingdom should include all of the following: England, Northern Ireland, Scotland, Wales, the Isle of Man, the Channel Islands, Gibraltar, and the Falkland Islands.

Consulting on Advanced Biologicals

Possible Tumorigenicity Risk Factors

- Expansion high population doubling level (PDL)
- Cumulative cell damage due to repeated enzyme exposure (e.g. passaging)
- Exposure to cytokines and growth factors
 - Minimise exposure
- Presence of undifferentiated pluripotent stem cells (i.e. ESC and iPSC products)
 - Suitably sensitive methods to detect residual stem cells

- Evidence for eventual cell senescence
 - Fully differentiated cells such a chondrocytes may be sufficient (i.e. senesce at low PDL)
 - No evidence for senescence may be worrying (e.g. pluripotent or transformed cells)
- End of production/post-production cells
 - Tumorigenicity testing in animals
 - In vitro methods, e.g. soft agar cultures
 - Chromosomal aberrations

Consulting on Advanced Biologicals

Are animal models suitable for safety testing?

- Animal stem cell niche may not be suitable for human cells
 - Different/incompatible adhesion molecules, cytokines, growth factors
 - Immune clearance before safety issues arise, e.g. tumorigenicity
 - Immunodeficient animals are 'abnormal'
 - More susceptible tumours
 - Suitable pos/neg control cells

Some of the general arguments

Immunodeficient animals

Mutant allele	Common strain name	Strain nomenclature	Phenotype	Advantages	Disadvantages	Refs
Foxn1™	C57BL/6-nu	B6.Cg-Foxn1™	* Athymic	* Lacks T cells	High NK-cell activity Intact humoral immunity No engraftment of human haematopoietic cells	28,136
Prkde ^{seld}	CB17-scid	C.BKa lghb-Prkdc ^{scid} / lcrSmn	 No mature T and B cells Radiation sensitive (DNA-repair defect, cannot survive high doses of radiation) 	* Lacks mature T and B cells	High level of innate immunity and NK-cell function Leaky Very low level of engraftment of human cells	1
Prkde ^{seld}	NOD-scid	NOD.CB17-Prkde ^{scid}	No mature T and B cells Radiation sensitive Decreased innate immunity	Low level of innate immunity Low NK-cell function Increased engraftment of human HSCs and PBMCs	Residual innate immunity Low but present NK-cell activity Decreased lifespan owing to thymic lymphomas	9

Shulz et al Nat Rev Immunol. 2007 Feb;7(2):118-30.

Consulting on Advanced Biologicals

CAB

Homologous Product

- Can then be studies in syngeneic/allogeneic setting.
 - Physiological processes should be intact (PoC)
- The manufacturing process is designed for human cells and may not result in a sufficiently homologous product with animal cells
 - Would need to be altered (GF, cytokines, serum, selection mAbs, culture media etc)
 - Product would therefore not be representative of what will be given to humans

Immunodeficient animals

- Understand the nature of the animal
- Not all arms of the immune system will necessarily be defective
- Innate responses commonly present
- These often quite important for xenogeneic antigens
- You could include immunosuppression
 - May complicate interpretation
 - Best avoided unless intend to use in clinic also

Consulting on Advanced Biologicals

So which model systems should I use?

- Key is to identify which model might be the most <u>predictive of the human</u> situation (for the aspect under study)
- Animals or in vitro or ex vivo organ culture should all be considered

Conclusions

- Cells (including stem cells) pose a range of novel issues for safety testing
- Safety testing starts with appropriate testing of materials
- Using animals to study human cell therapy products comes with many problems
- In vitro bioassays are also artificial but may be more informative in some cases
- There is a need to think outside the box

Consulting on Advanced Biologicals